3. Секція "Матеріалознавство порошкових та композиційних матеріалів і покриттів"
Постійне посилання на фондhttps://archive.ipms.kyiv.ua/handle/123456789/23
Переглянути
3 результатів
Результати пошуку
Документ THE ROLE OF HAFNIUM IN MODERN THERMAL BARRIER COATINGS(Springer Science+Business Media, LLC, 2021) S.M. Lakiza; M.I. Hrechanyuk; V.P. Red’ko; O.K. Ruban; Ja.S. Tyshchenko; A.O. Makudera; O.V. DudnikThe world’s experience in using hafnium in two important parts of high-temperature thermal barrier coatings, such as the top thermal barrier layer and bond coat layer, was analyzed. In the top thermal barrier layer, hafnium is present as HfO2 completely or partially stabilized by yttria (or other rare- earth oxides). Another approach is to use hafnium dioxide as an addition to conventional coatings based on ZrO2 stabilized completely or partially. Electron-beam physical vapor deposition (EB- PVD) and air plasma spray process (APS) are most common techniques for applying thermal barrier coatings containing hafnium dioxide. Magnetron sputtering turned out to be successful as well. Compared to the 8YSZ coating, the 7.5YSH coating showed reduced Young’s modulus, 30% lower thermal conductivity (decreased to 0.5–1.1 W/(m · K)) at high temperatures for HfO2 stabilized with 27 wt.% Y2O3, and higher sintering resistance and heat resistance. Doping of ZrO2 and HfO2 by several stabilizers proved to be promising: specifically, doping by a mixture of one trivalent ion larger than Y3+ and another trivalent ion smaller than Y3+, preserving the metastable structure of the t phase. The importance of phase diagrams for a correct choice of the top coat composition and doping elements for the bond coat is shown. Doping the bond coat with a small amount (up to 1 wt.%) of hafnium improved its cyclic oxidation resistance and increased the adhesion of the thermally grown oxide layer to the bond coat and strength of the latter.Документ THERMAL BARRIER COATINGS: CURRENT STATUS, SEARCH, AND ANALYSIS(1068-1302/18/0102-0082 2018 Springer Science+Business Media, LLC, 2018) S. M. Lakiza; M. I. Grechanyuk; O. K. Ruban; V. P. Redko; M. S. Glabay; O. B. Myloserdov; O. V. Dudnik; S. V. ProkhorenkoThe principles for selecting materials to be used as thermal barrier coatings (TBCs) are presented. The advantages and disadvantages of new methods for TBC deposition are briefly described. After measurement of the thermal conductivity and thermal expansion coefficient, it is required to ascertain that such materials do not interact with the thermally grown aluminum oxide and then to determine their strength, fracture toughness, hardness, and Young’s modulus. The thermal conductivity of TBC can be reduced by increasing its porosity and suppressing its sintering. The need for and drawbacks of multilayer coatings are shown. If TBC meets all the requirements, then TBC corrosion resistance to Na2SO4, V2O5, P2O5, sand, and volcanic ash in operation and ways to protect TBC against damage need to be determined. The prospects and areas for development of these techniques are outlined.Документ About Al–Si Alloys Structure Features and Ductility and Strength Increasing after Deformation Heat Processing(Metallophysics and Advanced Technologies 2022, vol. 44, No. 6, pp. 769–784, G. V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, 2022) V. V. Kaverinsky; Z. P. Sukhenko; G. A. Bagluk; D. G. VerbyloA technique of deformation heat processing for Al–Si based alloys is proposed which can significantly increase their both ductility and strength and also re- veals additional reserves for their strength and hardness increasing through cold work hardening. The method includes serial of small hot plastic defor- mations with intermediate cooling and short annealing. This makes the silicon inclusion rather small with shape close to spherical, which leads to the ductil- ity increasing. Then a work hardening processing could be performed for the material. Finally, both ductility and strength appear higher than in the initial cast state.