Публікації. Монографії (відділ 21)
Постійне посилання зібранняhttps://archive.ipms.kyiv.ua/handle/123456789/145
Переглянути
Документ POLYMER MATERIALS REINFORCED WITH SILICON NITRIDE PARTICLES FOR 3D PRINTING(Springer Science+Business Media, LLC, 2020) O.B. Zgalat-Lozynskyy; O.O. Matviichuk; O.I.Tolochyn; O.V. Ievdokymova; N.O. Zgalat-Lozynska; V.I.Zakiev3Comprehensive research into the production of a ceramic-reinforced polymer material from highdensity polyethylene or polypropylene and -Si3N4 powder was conducted. The incorporation of silicon nitride ceramic particles (5 and 10 vol.%) into the polymers to make polymer–ceramic filaments was studied step by step. High-quality polypropylene–ceramic filaments could be obtained at an extrusion temperature of 150oC with an extrusion speed of 20 cm/min and polyethylene–ceramic filaments at 160oC and 30 cm/min. Data on the shape and size distribution of Si3N4 particles were used to simulate the elementary volume of the filaments to determine the mechanical properties of the composites applying a 2D finite-element model. The reinforcement of the polypropylene/polyethylene-matrix material by 10 vol.% Si3N4 particles was not sufficient because the composite elastic modulus increased insignificantly and the critical strain decreased substantially to incorporate a greater volume of hard particles to improve the elastic modulus. To assess the quality of the polymer–ceramic filaments, parts of different shape (washer and auger) from reinforced and unreinforced filaments were designed and printed. The printed polymer–ceramic parts demonstrated a smooth surface and had no ledges or discontinuous areas. The mechanical (Vickers and Brinell hardness) and tribological (volume wear) properties of the materials were examined. Wear tests of the polyethylene–Si3N4 composite showed that its wear resistance tended to improve with increasing ceramic content of the filament. The low abrasive wear of the Si3N4-reinforced polypropylene/polyethylene material and the behavior of ceramic particles in contact with the indenter indicate that the composite has high fracture resistance in 3D printing.Документ MATERIALS AND TECHNIQUES FOR 3D PRINTING IN UKRAINE (OVERVIEW)(Springer Science+Business Media, LLC, 2022) O.B. Zgalat-LozynskyyAn overview of additive manufacturing techniques in Ukraine from the end of the last century to 2021 is presented. The current state of 3D printing in Ukraine was analyzed in terms of new developments (startups), research areas, and direct implementation of additive manufacturing techniques. The main scientific and research teams that were actively engaged in the development and implementation of additive manufacturing techniques in Ukraine since the end of the 1990s were addressed. They include those involved in research of selective laser sintering for ceramic powders produced from refractory ZrO2–TiO2 and TiN–TiB2 compounds conducted at the Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, and research intended to produce 3D parts by fused deposition of metals or alloys called xBeam 3D Metal Printing conducted at the Paton Electric Welding Institute, National Academy of Sciences of Ukraine. This technique found its commercial implementation in the Chervona Hvilya PJSC startup. The paper discusses the main trends in the development of new equipment for 3D printing with ceramics, polymer/ceramic materials, and metals and alloys, as well as experiments combining different materials to achieve new properties. The latest experiments on the shape of materials are presented. They involve the formation of lattice structures that not only reduce the weight of parts but also impart properties that are comparable to those of dense materials. The main attention is paid to the overview of up-to-date capabilities and prospects for the use of additive manufacturing techniques and materials in national materials science. Attention is also focused on prospects for producing parts of complex shape for various functional purposes from ceramics, metals, and associated composites.Документ Synthesis and spark plasma sintering of Si3N4–ZrN self-healing composites(2022 Elsevier Ltd., 2022) Ostap Zgalat-Lozynskyy; I. Kud; L. Ieremenko; L. Krushynska; D. Zyatkevych; K. Grinkevych; O. Myslyvchenko; V. Danylenko; S. Sokhan; A. RagulyaA Si3N4–ZrN wear-resistant self-healing composite material was developed. Si3N4–ZrN composite ultrafine powders were synthesized at a temperature of 1200 ◦С via solid-state reactions without milling and densified by spark plasma sintering at 1650 ◦C to a relative density of 97 ± 0.5%. Balls 13.494 mm in diameter for ball bearings manufactured by spark plasma sintering had a fine-grained structure with a grain size of 200–500 nm, Vickers hardness of 22.5 ± 1.8 GPa, and indentation fracture toughness of 6.2 ± 0.4 MPa. The tribological properties of the composite were investigated under static and dynamic loading. The self-healing capability of the Si3N4–ZrN composite was evaluated in the temperature range 500–550 ◦С. High-temperature three-point bending tests of notched specimens showed a bending strength of 383 ± 21 MPa at room temperature and 413 ± 30 MPa at 500 ◦С, which confirmed the self-healing of the composite.Документ СУЧАСНІ ТЕХНОЛОГІЇ 3D-ДРУКУ, МІКРОХВИЛЬОВОЇ ОБРОБКИ ТА ІСКРО-ПЛАЗМОВОГО СПІКАННЯ ДЛЯ ВИГОТОВЛЕННЯ ВИРОБІВ ІЗ КОМПОЗИЦІЙНИХ МАТЕРІАЛІВ НА ОСНОВІ ТУГОПЛАВКИХ СПОЛУК За матеріалами доповіді на засіданні Президії НАН України 6 березня 2024 року(Інститут проблем матеріалознавства ім. І. М. Францевича Національної академії наук України, 2024) ЗГАЛАТ-ЛОЗИНСЬКИЙ Остап Броніславович; Zgalat-Lozynskyy O.B.У доповіді наведено найважливіші результати фундаментальних та прикладних досліджень, проведених в Інституті проблем матеріалознавства ім. І.М. Францевича НАН України з розроблення сучасних технологій синтезу та консолідації композиційних матеріалів на основі тугоплавких спо- лук для виготовлення виробів, що експлуатуються в умовах екстремальних температур, навантажень та агресивних середовищ, а також створен- ня новітніх матеріалів для 3D-друку за технологіями робокастингу та FDM. Представлено новітні розробки в галузі переробної промисловості, які передбачають впровадження екологічно чистих та енергоощадних технологій обробки руди, що має особливе значення для підвищення конку- рентоспроможності експортно орієнтованих галузей економіки України у післявоєнний час. The report presents the most important results of fundamental and applied research conducted at the Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, on the development of modern technologies for the synthesis and consolidation of composite materials based on high-melting-point compounds for the manufacture of products that are operated in conditions of extreme temperatures, loads and aggressive environments, as well as the latest materials for 3D printing using Robocasting and FDM technologies. Novel developments in the processing industry are presented, which involve the introduction of environmentally friendly and energy-efficient ore processing technologies, which is of particular importance for the development of the competitiveness of export-oriented sectors of the Ukrainian economy in the post-war period.